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The form of various cavity models are discussed with regard to their prediction 
of the isotropic hyperfine coupling constants of the "normal muonium" states 
in group IV elements. Neither the bulk dielectric constant nor the cavity radius 
seem to be as important as the detailed variation of the dielectric function 
very close to the trapped nucleus. 
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Introduction 

Recently Holzschuh et al. [ 1 ] questioned the validity of"cavi ty models" to explain 
"normal muonium" states in diamond, silicon and germanium. "Normal 
muonium" states are characterised by exhibiting isotropic hyperfine coupling 
constants, determined by muon spin rotation (/zSR) spectroscopy, which are of 
the order of that expected for the free muonium atom (see Table 1 for the 
fractional values). It is the purpose of this paper to discuss the details of the 
dielectric function used in these models and to suggest the origin and resolution 
of the difficulties encountered. 

Description of "cavity models" 

In this paper a cavity in a material is defined as that region where the dielectric 
constant is less than the bulk dielectric constant (see Table 1). The muonium 
atom is placed at the centre of the cavity, which is always assumed to be spherical. 
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Table 1. Data used for diamond,  silicon and germanium crystals, f is the ratio of  the observed muon 
isotropic hyperfine coupling constant  with that of  the free muon ium atom. All distances are in atomic 

units (a o) 

Element Dielectric constant  Cavity radius Hyperfine interaction 
e' R f 

C 5.7 1.45 0.829 
Si 11.9 2.22 0.450 
Ge 16.0 2.31 0.520 

The simplest model of all is to assume that the dielectric constant within the 
cavity is uniform with a value of unity. It is possible to solve numerically the 
Schr6dinger equation for the hydrogen atom with the spherical potential function, 
modified by the dielectric function. This has been done for all the calculations 
described here. 

Solving the Schr6dinger equation for the case of the square well dielectric 
function, e(r) = 1 for r <  R, R being the radius (in units ao, lao = 0.529 A) of the 
cavity, and e(r)= e', for r >  R, where e' is used to denote the bulk dielectric 
constant, we obtain the following f values (and, in parentheses, energies in 
Hartrees) 

C 1.45 (-0.350), Si 1.21 (-0.455), Ge 1.19 (-0.461). 

The symbol f is the fractional hyperfine interaction calculated by dividing the 
calculated (or observed) hyperfine coupling constant by the value obtained for 
the muonium atom in its "free" (vacuum) state, f values larger than unity clearly 
demonstrate the "squeezing" effect of the cavity as it forces the electron into the 
relatively low potential energy of the cavity interior. 

This squeezing is not universally applicable since the size of the cavity relative 
to the "'size" of the muonium atomic orbital is very important (see Table 2). 
Using a dielectric constant appropriate for diamond (e'  = 5.7) a cavity larger than 
5ao has a negligible effect. As R decreases there is a rapid increase in the f value 
which peaks at a cavity radius of about 1 a0 (the radius of maximum probability 
for the muonium atomic orbital) before a rapid decrease to the small limiting 
value for a cavity of zero size (that is, a muonium atom in a uniform medium 
wittl e' = 5.7). The smaller the cavity the higher is the energy. The interpretation 
is quite clear. For large cavities the electron density is easily "squeezed" into the 
cavity, although at the expense of a slight increase in the kinetic energy. However 
a limit is reached when it is better for the electron to occupy regions of relatively 
high potential energy rather than to increase the kinetic energy. In other words 
the wave functions is forced to spread further outside the cavity. 

Nevertheless, assuming the cavity size is related to the crystal lattice parameters, 
there is no way that the experimental f values (Table 1) can be correlated with 
the results of Table 2 since the former pass through a minimum with increasing 
cavity size whereas the latter pass through a maximum. It is difficult to believe 
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Table 2. Results obtained for the hydrogen (muonium) 
atom in a spherical cavity of radius R where the dielectric 
constant is 1 inside and 5.7 outside. The radial electron 
density function peaks at d . . . .  f is the ratio of the isotropic 
hyperfine coupling constant with that of the free atom and 
the energy is in Hartrees. All distances are in atomic units 
(%) 

R dma x f Energy 

0 5.61 0.006 -0.015 

0.5 3.58 0.108 -0.022 

0.6 2.11 0.311 -0.033 

0.7 1.01 0.678 -0.056 

0.75 0.75 0.898 -0.073 

1.0 0.79 1.450 -0.188 
1.45 0.87 1.454 -0.350 

2.0 0.94 1.249 -0.441 
5.0 1.00 1.005 -0.499 

1.00 1.000 -0.500 

77 

that this simple model can be in error solely due to poor choices of values for 
the cavity radii or the bulk dielectric constants. This forces us to consider the 
variation of the dielectric within the cavity. 

This was first recognised by Reiss [2] who proposed that the electrostatic potential 
around the hydrogen nucleus (muon) should be 

ee( 
V . . . .  1 -  

r R 
O<_r<_R 

e 
V = - -  R<-r<-m. 

Err 

This function defining the variation of the dielectric within the cavity was chosen 
to remove the discontinuity in the square well potential (above) at the cavity 
surface. The effect on the results is quite dramatic (see Table 3, Reiss function). 
There is a reversal in the order of f compared to the square well potential and 
agreement with experiment is now generally worse. In fact this reversal is also 
found in calculations using a dielectric function calculated from the experimental 
band structure of each material [3] (Table 3, Hermanson function), and also 
using the model proposed by Resta [4] (who solved the linearised Thomas-Fermi 
equation) 

e ( r ) = e ' q R / [ s i n h q ( R - r ) + q r ] ,  r<_R 

e ( r ) = e ' ,  r >  R 

where q is 1.36, 1.10 and 1.08 and the screening radius R(ao) is 2.76, 4.28 and 
4.71 for diamond, silicon and germanium respectively. 
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We have studied the properties of  these functions, where possible, and have 
looked for characteristics which tend to dominate the calculated value of f In 
all these calculations we conclude that the slope of the dielectric function at the 
cavity centre seems to be a significant factor in determining f, since the larger 
the slope, the smaller is f It is easy to demonstrate this using the simple dielectric 
functions, e ( r ) =  1 + mr, inside the cavity and the bulk dielectric constant, e', 
outside the cavity. The results are shown in Table 4. A physical justification for 
this form of dielectric is suggested below. 

Calculations which use e ( r ) =  1+ mr for all r, that is, R = o0, clearly show that 
this function tends to spread out the wave function for all positive values of the 
slope, m. This dielectric function by itself does not seem to introduce a "cavity 
effect" as is indicated by the f values which are all less than 1, and further, by 
the orbital "size", d . . . .  which is larger than lao. The superposition of this 
dielectric function onto the square well models appropriate to diamond, silicon 
and germanium in fact reduces the cavity effect of the square well model with 
the general result that the larger we choose m the larger is dm,x and the smaller 
is f It is interesting, although of no quantitative significance, to note that for 
m = 0.4 the f values for C, Si and Ge follow the sequence found experimentally. 
At least this shows that even a simple extension to the cavity model can give the 
right qualitative order in the f values. Of  course there is no reason to believe 
that the slope at the cavity centre should be the same for all three crystals, or 
indeed that the slope should be constant within the cavity. 

In fact the slope at the centre will probably be less than the average slope of 
e(r)  in the cavity. For example, referring to table 3, the Reiss function for diamond 
has a slope of 0.81 which corresponds approximately to m = 1 in Table 4. Similarly 
the Reiss slopes for silicon (0.49) and germanium (0.46) correspond to m = 0.5 
in Table 4. The very different Resta function with its large slope at the cavity 
centre leads to very small f values, predicted using Table 4 for m > 1.2. This 
confirmation of the correlation of f to the slope of the dielectric in the cavity 
prompts an investigation as to the importance of this relative to the cavity radius 
and the bulk dielectric constant. I f  it should prove that the variation of e(r)  near 
the cavity centre is the more important it will show that the difficulty with the 
cavity models lies in the determination of e(r)  only in the region of the cavity 
centre. In other words, for deep levels in semi-conductors the bulk dielectric 
constant and cavity size may be of only secondary importance. 

Spherical step function 

Since most of  the functional forms of e(r)  already used in the literature are very 
restricted, we have looked for a general mathematical function which has sufficient 
parameters to simulate any of the previously used functions. The nature of the 
cavity is essentially a "s tep"  function. One of the most commonly used forms 
for this is 

e(r)  = e"+ x tan -1 (y (r  - D) )  
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where y is a parameter  which governs the slope of the step 

Oe(r) xy 
Or l + y2 ( r -  D) 2 

D is not strictly the cavity radius, something which is only clearly defined using 
a square well function, but it is that distance from the cavity centre where the 
dielectric is e". I f  

x = ( e ' -  1 ) / ( ~ r / 2 - t a n  -1 ( - y D ) )  

then 

e" = ( e ' -  xTr/2). 

If  y is sufficiently large then e "=  l + ( s ' - 1 ) / 2 ,  that is, half-way between the 
initial value 1 and and final value e'. In this case the step function will closely 
approximate the square well function. For example, if y = 100 using e ' =  5.7 and 
D = 1.45a0 (the diamond parameters) the square well results are closely repro- 
duced. I f  we use y = 2.5, giving a slope at the cavity centre of  0.289, the function 
gives an f value of 0.839, which is sufficiently close to the experimental value to 
choose this value of y for a series of  calculations. Using 

e ( r ) = e " + x t a n  1(2 .5( r -1 .45))  for r < R  

e(r)  = 5.7 for r > R  

the results in Table 5 were obtained. 

If  we choose R = 1.45ao, e(1.45)= 3.13, much less than the bulk dielectric con- 
stant, a discontinuity has been introdcued into e(r). But this does not cause a 
significant change in f when compared with calculations using much larger values 

Table 5. Results obtained for the hydrogen (muonium) atom in a cavity 
where the dielectric function is e ( r )  = e " +  x tan -1 (2 .5 ( r -  1.45)) for r -< R 
and e (r) = z' for r > R. The slope at the cavity centre is 0.289. The energies 
are in Hartrees and the radial electron density distribution peaks at dma X. 
f is the ratio of the calculated isotropic coupling constant with that of 
the free atom. All distances are in atomic units (ao) 

e' Energy dma x f R 

5.7 -0.082 0.95 0.764 1.1 
5.7 -0.092 0.96 0.808 1.2 
5.7 -0.100 0.97 0.823 1.3 
5.7 -0.107 0.98 0.847 1.45 
5.7 -0.115 0.99 0.859 2.0 
5.7 -0.117 0.99 0.853 3.0 
5.7 -0.118 0.99 0.839 oo 

11.9 -0.087 0.95 0.889 1.45 
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T a b l e  6. Solutions of the Schr6dinger equations for a hydrogen atom using the Coulomb potential 
screened by the fitted dielectric functions of Walter and Cohen [6] (WC) and of Vinsome and 
Richardson [7] (VR). All results, except the slopes of e ( r )  at the cavity centre, are taken from Table 
2 of Wang and Kittel [5] 

Silicon Germanium 

Slope QD e' f Slope QD e' f 

WC 0.836 0.9153 11.47 0.427 0.808 0.8702 14.00 0.453 
VR 0.835 0.9921 10.53 0.429 0.782 0.8377 14.95 0.478 

of R. For R < 1.45ao the changes in f are more significant, but not dramatically 
so. In addition, if the bulk dielectric constant is more than doubled from 5.7 to 
11.9, the value for silicon, the change is less than 5% for R = 1.45a0. Overall, 
from many other calculations, it is clear that the f values are dependent on the 
form of e(r)  only in the region of the cavity centre and quite insensitive beyond 
ao. This might suggest that the least-squares fitting procedure used by Wang and 
Kittel [5] to obtain e(r)  from e(q)  calculated from experimental data by Walter 
and Cohen [6] and Vinsome and Richardson [7] might be reconsidered. Our 
work would seem to suggest that the least-squares fit should be strongly weighted 
towards small values of  r. This may be even more important in the case of 
diamond [1] where the calculated f value from such a dielectric function is too 
small by a factor of  more than 2. To re-emphasise the importance that the slope 
seems to have on the value o f f  we have reproduced in Table 6 some results from 
Wang and Kittel and supplemented them with the slopes of  the dielectric function 
at the cavity centre. Even though QD and to differ for Si the slopes are very close 
as are the corresponding values of f 

Other calculations [8] 

The molecular electrostatic potential, that is, the field sensed by a positive test 
charge, within the diamond lattice is not spherical. However at the centre of  the 
tetrahedral cavity in the diamond lattice the potential is positive, V0. I f  we assume 
that, after spherical averaging, the potential can be represented by 

V =  Vo + l kr  2 

then 

1 1 
- -  - -  W 

~( r ) r  r 

o r  

2 2 1 e(r)  l + V o r + V o r  + ( ~ k +  3 3 Vo)r "", (r < l /  Vo). 

This clearly indicates that there is a significant variation in the dielectric close 
to the cavity centre. Crudely the m in e(r)  = 1 + mr can be regarded as a kind of 
averaged V. In any event it helps to explain why all observed f values are less 
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than unity for crystals of these Group IV elements. It may seem at first sight that 
a simple cavity model cannot realistically simulate behaviour at distances less 
than la0. Neverthless, since the muonium is caught in the potential field of the 
crystal at a point where the electron density of the rest of the lattice is very small, 
it will respond to this potential and this is summarized by e(r). In addition cavity 
models have long been used in helping to rationalise the properties of these and 
similar solids and we have attempted to maintain the spirit of  the model. However 
more detailed ab initio self-consistent-field calculations on atom clusters rep- 
resenting the crystal structure have already been done [9, 10] and similar calcula- 
tions of the molecular electrostatic potential will be reported later [8]. 

Conclusions 

The wave function of a hydrogen (muonium) atom trapped in a cavity depends 
critically on the form of the dielectric function within 1 a0 of the nucleus. Neither 
the bulk dielectric constant nor the cavity radius when this is larger than about 
1.3ao seem to be important. 
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